
Manish Limaye

Suganthi Manonmani

April 2018

Agenda

• Need for DevOps @Travelport

– Why?

– Project Execution Approach

– Why Partner with TSI?

• zTPF DevOps Toolchain - Technical Solution

– Minimum Viable Product & SDLC Gates for the MVP Product

– 2016: Impact Analysis Tool

– 2018: Git, Jenkins, Activiti BPM

– The end to end Process

• Product Demo and Screenshots

• Key Take-Aways and Questions

Engineering Led Development / Testing

• Travelport is on a journey to take software/infrastructure development process to next level by fully
embedding engineering practices into all development.

• We have set the bar as “24 hours from ideas to production, no defects, no downtime”. Strategy is to
introduce a set of:

5

• Policies & Procedures: know what “excellent” looks like
• Design & coding standards
• Repeatable processes

• Practices: eliminate waste & rework
• Design / code reviews
• Version control & configuration management
• Stop on test failure
• Escaped defect analysis & feedback

• Automation: make build / test / deploy “free, perfect,
and now”
• Continuous integration
• Static code quality & security analysis
• Multiple levels of automated testing (unit /

acceptance / load)
• Release & install packaging

• Measurement: objectively measure quality & velocity

React/Angular/Nod
eJs

.Net

Java

C++

Database / ETL /
Reporting

zTPF

ODM

Infrastructure as
Code

Tooling Platform

Policies

Travelport Confidential 6

• TPF is a mission critical
operating system for Travelport,
and bringing modern
engineering practices to TPF is
as important as doing so in
Cloud.

• The tools and processes that
support the TPF development
staff were developed over 20+
years using REXX and CMS
Pipes, and not suited for nature
of Agile development and CI/CD
automation.

Project Execution Approach

• Challenged status quo and start with industry standard best practices, not what we do today.

• Created single DevOps end-to-end workflow for all our TPF Systems in collaboration with SMEs

• Built on top of Open Source Tools.

• Multi year project

– Wave 1 : POC and Research Analysis tool

– Wave 2 : End to end MVP focusing on migration of IBM systems code

– Wave 3 : Migration of TPF application

– Wave 4: Finish application migration and work on non-MVP features

• The solution under development is owned by Travelport

7

Why Partner with TPF Software Inc.(TSI)?

Travelport chose TSI for building the solution because:

• TSI has shown leadership in DevOps for TPF conducting a DevOps Symposium in January 2016 for the TPF
user community.

• TSI’s technology and vision closely align with Travelport’s long term tools’ strategy.

• TSI’s brought in new talent to create a right mix of TPF and Open source skills. In addition, their background
in TPF tools development has been of great help.

• TSI’s POC showed innovation and talent

• TSI has shown their flexibility in working with Travelport in identifying and addressing user requirements.

8

zTPF DevOps Tool Chain

10

zTPF DevOps Tool Chain - Updates

• 2017: Impact Analysis developed and rolled out to users

• 2018: zTPF DevOps Toolchain was used to develop, build and deploy the following in zTPF Production

– DFDL schema

– Assembler segments

– C segments

– DBDEFs

11

Minimum Viable Product (MVP)

The first version of this zTPF DevOps toolchain which covers the end to end process was deployed in
Production on 22nd March and has been rolled out to Travelport's Systems team, File Support team. The
Minimum Viable Product(MVP) that is currently in production has the following value adds:

• State-of-art SCM in GIT

• Build using Jenkins

• Positioned for Continuous Integration

• Source Contention Management

• Divergence and Convergence

• File Sync

• Workflow using Activiti BPM

• Peer Review

• Production build and load improvements

• Robust Dependency Analysis from code check-out until loaded to production

• Production online status notification

SDLC Gates for a project developed and deployed
using the zTPF DevOps Toolchain

Project
Active

Submitted Approved

Passed QA
Regression

Testing

Passed
Acceptance

Testing

Ready for
Production

Deployment
Online

Unit Testing
Completed

Peer Review
Completed

Integration
Testing

Completed

Project - Active

Feature1 – In Progress

Ready for QA

Project - secured

Impact Analysis – current VM based tools
(hyperlinks in images)

14

MX tool used in 1st system Workbench used in 2nd system

CAPM54 used in 3rd system

Impact Analysis Tool – Developed in 2016
(hyperlinks in images)

15

Displays Source

• .asm, .c/.cpp, .sbt

• .mac, .h/.hpp, include

• .mak

CSO and BSO xref

• Components of .so

Recursive Calls

• Self referenced
nodes

• Repeated nodes

Build Index offline

• Complete Index
rebuild

• Refresh index
after every
deploymentExecutable Macros

• Segment calls embedded in
macros Sabretalk

• .sbt xref

• Includes and
includeafs xref

Export Results

• Exports details of
analysis

• .pdf, .xls

The end to end Process using Git, Jenkins, Activiti BPM – Delivered in 2018
(hyperlinks in images)

Config files maketpf.cfg
Environment files
Makefiles
Control files tpf.cntl & usr.cntl
Bldtpf/maketpf assemble, compile,
link

Loadtpf .oldr file

Event – Git Push to Master

Oldr file (ftp)

Continuous Integration
(maketpf build)

Continuous Delivery
(fire ZOLDR commands
via YODA / TOS interface)

Local
Workspace

QA
Workspace

Deploy
Workspace

Developer
VPARS

QA VPARS
Functional ,
Regression

Production
zTPF

Git Push operation triggers
the Jenkins CI process

Pull source
from Git

Push derived
binaries to
GitLfs

16

zTPF DevOps Tool Chain - Configured Open Source Tools for zTPF

• Built the solution using Open Source Technology

• Impact Analysis tool was built in-house

• Used Industry Standard Practices to solution the problem

• Customized these Open Source tools to address that which makes zTPF Special

– Build Dependency: large code base

– Single Source, multiple objects

– Deployed to multiple target systems

– Dependencies, Date Audits

• Configured Open Source Tools for zTPF

• Appropriate design patterns to enable appropriate usage in zTPF

17

Application Developer Lead(ADL) Role
(hyperlinks in images)

Travelport Confidential 19

Creates Project Creates Features –
Assign Developers

Submits Project
Plan (secures)

Developer Role
(hyperlinks in images)

Travelport Confidential 20

Search and Checkout
Source artifact from

Git

Update code in IDE,
File Sync, Local Build –
Performs unit testing

Commit, Checkin
Source artifact

Devl Build –Performs
Integration testing

Reviewer Role
(hyperlinks in images)

Travelport Confidential 21

Reviews the source artifacts
and documents the

comments in Gitblit tickets

Marks the Feature as Peer
Review Completed

Dev Manager Role
(hyperlinks in images)

Travelport Confidential 22

Approves Project Staging Build done Staging loadset & fallback
loadset generated(same

loadset used for QA, Pre-Prod
and Production deployment)

Push derived artifacts to Git
Derived repository

QA Role
(hyperlinks in images)

Travelport Confidential 23

Staging loadsets deployed to QA Regression test systems

Test System Support Role
(hyperlinks in images)

Travelport Confidential 24

Staging loadsets deployed to Pre-Prod COPY systems

Loads Control Role
(hyperlinks in images)

Travelport Confidential 25

Staging loadsets ftp’ed to zTPF Production System

Technical Service Desk(TSD) Role
(hyperlinks in images)

Travelport Confidential 26

Zoldr actions – Staging
loadsets deployed in

zTPF Production system

zTPF Online feedback –
Project marked as

Online.

Artifacts merged to
Production Git

Repository

zTPF DevOps Tool Chain – The journey continues…

27

Key Take-Aways

• Modern automated software engineering practices are equally applicable to TPF and mainframe in general.

– Consistent and connected software engineering across the organization

– Productivity improvements in TPF development through implementing common processes and modern tools.

– Learning curve for new hires shortened by leveraging Open Source Tools that are taught in colleges today.

– Enforce business processes and development best practices through automation of repetitive tasks in a more consistent manner.

• Engage subject matter experts early on and gain their trust to discussion and demonstration.

• Separate needs from habits.

• Build incrementally and show value.

• Gain support of leadership.

29

Thanks!

30

MX tool used in T4
(hyperlinks in images)

32

MX tool used in T4

Workbench used in WSP
(hyperlinks in images)

33

Workbench used in WSP

CAPM54 used in Delta
(hyperlinks in images)

34

CAPM54 used in Delta

Displays Source
(hyperlinks in images)

35

Displays Source

Recursive Calls
(hyperlinks in images)

36

Recursive Calls

CSO and BSO xref
(hyperlinks in images)

37

CSO and BSO xref

Executable Macros
(hyperlinks in images)

38

Executable Macros

Build Index Offline
(hyperlinks in images)

39

Build Index offline

Sabretalk xref
(hyperlinks in images)

40

Sabretalk

Export results – pdf, xls
(hyperlinks in images)

41

Export Results

Build in devl workspace

42

Deployment Screen for zTPF Test Systems

43

zTPF VPARS test systems

44

TSD Screen for zTPF Production Deployment

45

zTPF Production /Native Systems

46

ADL – Creates Project

Travelport Confidential 47

ADL – Creates Feature

Travelport Confidential 48

ADL – Submit Project

Travelport Confidential 49

Developer – Source code search for Check-out

Travelport Confidential 50

Developer – Edit, File Sync

Travelport Confidential 51

Developer – Check-in

Travelport Confidential 52

Developer – Devl Build

Travelport Confidential 53

Reviewer – peer review comments

Travelport Confidential 54

Reviewer – mark peer review completed

Travelport Confidential 55

Dev Manager – Approve Project

Travelport Confidential 56

Dev Manager – Staging build

Travelport Confidential 57

Dev Manager – Staging loadset & fallback loadset

Travelport Confidential 58

Dev Manager – Staging derived artifacts pushed to
derived repository

Travelport Confidential 59

Technical Service Desk – zoldr actions

Travelport Confidential 60

Technical Service Desk – zTPF Online feedback

Travelport Confidential 61

Technical Service Desk – Merged to Production Git Repository

Travelport Confidential 62

